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ABSTRACT

Prosody modeling is an essential component in modern
text-to-speech (TTS) frameworks. By explicitly providing
prosody features to the TTS model, the style of synthesized
utterances can thus be controlled. However, predicting natu-
ral and reasonable prosody at inference time is challenging.
In this work, we analyzed the behavior of non-autoregressive
TTS models under different prosody-modeling settings and
proposed a hierarchical architecture, in which the prediction
of phoneme-level prosody features are conditioned on the
word-level prosody features. The proposed method outper-
forms other competitors in terms of audio quality and prosody
naturalness in our objective and subjective evaluation.

Index Terms— hierarchical prosody, prosody prediction,
text-to-speech

1. INTRODUCTION

In order to synthesize human-like speech utterances by Text-
to-speech (TTS), it is important to model the variation in
speech signals, including rhythm, intonation, and stress, etc.
These factors, collectively referred to as prosody, are not
contained in the text transcripts, but are very important for
conveying information that is not specified by the texts. Pro-
viding additional prosody information to the TTS model is
referred to as prosody modeling, which enables expressive
and controllable speech synthesis [1, 2, 3, 4, 5].

In this work, we focus on fine-grained prosody model-
ing [5], where the prosody of an utterance is represented as
a sequence of prosody features instead of a single sentence-
level prosody feature. Each fine-grained prosody feature en-
codes the prosody associated with a speech segment, such as
a phoneme or a word. Aside from enabling local prosody con-
trol in speech synthesis, fine-grained prosody modeling also
further reduces the complexity of the TTS task itself, since
the information contained in each fine-grained prosody fea-
ture is explicitly assigned to a speech segment. This makes
prosody modeling especially an important component in non-
autoregressive TTS framework [6, 7]. Compared with autore-
gressive models that suffer from the false alignment problem,
non-autoregressive TTS systems are faster and more robust
[8], but the training is much more difficult since the model
has to predict the entire mel-spectrogram simultaneously. The

prosody features provide additional information to the TTS
model and effectively simplify the mapping between the text
input and the speech output.

Many handcrafted features, such as fundamental fre-
quency (F0) contour and energy [6, 7], and even neural-
based features [1, 2, 3, 4, 5, 9], can be used to model the
prosody variation within an utterance. The prosody fea-
tures can be extracted from ground-truth speech signals at
training time, while how to generate natural prosody fea-
tures at inference time remains an open problem. Some
proposed to infer prosody features from phoneme-level fea-
tures [6, 7, 9, 10]. However, we consider that the attributes
that affect the prosody of an utterance, such as the meaning
of the sentence, and the speaker’s intention and sentiment,
can be better realized with word-level features rather than the
phoneme-level ones. The effect of different granularity in
fine-grained prosody modeling is studied in this work, and
the experimental results verify the above hypothesis.

There are three major contributions of this paper. First,
we figure out that there is a trade-off between the quality
of synthesized audio samples and the accuracy of prosody
prediction, with respect to the granularity of fine-grained
prosody modeling. Second, we compare different approaches
to extracting prosody features in terms of audio quality and
prosody naturalness. Last, we propose a hierarchical prosody
modeling framework, where phoneme-level prosody predic-
tion is conditioned on word-level prosody prediction, to com-
bine the advantage of phoneme-level and word-level prosody
modeling. With both objective and subjective evaluation, we
verify that the proposed hierarchical model outperforms any
other prosody modeling frameworks of interest. The readers
are encouraged to listen to the audio samples attached here 1.

2. BACKGROUND

A typical TTS model takes a phoneme sequence as inputs
to predict mel-spectrogram or raw waveform. As shown
in Fig. 1, prosody features can serve as extra inputs of the
TTS model, which simplifies the one-to-many mapping from
phoneme sequence to speech signals. At training time, the
prosody features are extracted from the ground-truth, en-

1Audio sample: https://ming024.github.io/hierarchical
prosody modeling
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abling the TTS model to generate speech signals with prosody
similar to the ground-truth utterance. The prosody features
can be obtained with the following methods:

a© Rule-based prosody features: F0 and energy can be
computed with many off-the-shelf packages, and are
often used to model prosody variation [6, 7].

b© Neural-based prosody features: a reference encoder is
used to drain information from the ground-truth utter-
ance [1, 2, 3, 4, 5, 9]. Suppose the size of the rep-
resentation is small enough. In that case, it is be ex-
pected that the information extracted from the ground-
truth is mostly about prosody and other information that
is not contained in the phoneme features, since the TTS
model can obtain phonetic information from the input
phoneme sequence [1].

At inference time, because we do not know the prosody
of the generated audio, prosody features are generated by the
approaches different from the training phase. There are a va-
riety of possible methods to generate prosody features. We
summarize them into four categories, as shown in Fig. 1:

1© Predicting prosody from phoneme feature sequence [6,
7, 9, 10].

2© Predicting prosody from word-level feature sequence.
There has been research trying to predict prosody fea-
tures from word-level features [11], whereas few works
used prosody features predicted from word-level fea-
tures to help speech synthesis.

3© Imitating the prosody of a reference utterance, by con-
ditioning the speech synthesis of arbitrary texts on
prosody features extracted from the reference, usually
used in prosody transfer tasks [1, 2, 3, 4, 5].

4© Sampling prosody from a prior distribution [2, 3, 4]

This paper will focus on inferring prosody from text inputs,
that is, phoneme and word feature sequences.

It has been shown that hierarchical structures of prosody
intrinsically exist in spoken language [12]. Some previous
work utilizes the hierarchical property of language to help
speech synthesis. [13, 14] used an autoregressive model to
predict frame-level prosody values and mel-spectrogram from
hierarchical linguistic features. However, their model only
handles prosody prediction at frame-level, and the underly-
ing prosody embedding is not fine-grained. [15] proposed a
TTS framework with hierarchical fine-grained prosody mod-
eling, where the word-level and phoneme-level prosody fea-
tures are encoded in two separate embedding spaces. The pre-
vious work presented a multi-level prosody modeling struc-
ture, but the generation of prosody embedding at inference
time is independent of text inputs. In our work, both word-
level and phoneme-level prosody is modeled. At inference
time, the multi-level prosody is predicted from phoneme-level
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Fig. 1: General pipeline for TTS systems with prosody mod-
eling.

and word-level features, which are derived from the input
text sequence. Our model is compatible with any pretrained
word embedding, so the word-level prosody prediction ben-
efits from the widely developed word representation models
pretrained from large amounts of unlabeled texts.

3. MODEL ARCHITECTURE

In this section we introduce our model architecture based on
FastSpeech 2 [6]. The architecture comprises the basic com-
ponents that are essential for generating valid speech signals
and prosody-modeling components, as shown in Fig. 2. The
proposed hierarchical architecture is in Section 3.4.

3.1. Basic components
The basic components in FastSpeech 2 include two Feed-
Forward Transformer (FFT) [16] stacks and a duration pre-
dictor. The configuration and hyper-parameters of the FFT
blocks and the duration predictor in our implementation fol-
low FastSpeech 2. The first FFT stack converts the phoneme
sequence into a phoneme-level feature sequence in the resolu-
tion of the input sequence length. The duration predictor takes
the phoneme-level feature sequence as inputs to predict the
duration of each phoneme. Then the phoneme-level features
are expanded in time according to each phoneme’s duration to
match the dimensionality of the output mel-spectrogram. At
training time, ground-truth duration obtained with the Mon-
treal Forced Aligner (MFA) [17] is used for expansion while
at inference time predicted duration is used. The expanded
feature sequence is then fed into the second FFT block, fol-
lowed by a linear layer to predict mel-spectrogram.

There are some differences between our implementation
and the original FastSpeech 2. We use an additional Post-
Net, which is the same as that used in Tacotron 2 [18], to
post-process the output. Mean Squared Error (MSE) loss is
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Fig. 2: Left: An overview of our model architecture. Right: A close-up view of the prosody-modeling components.

computed for both before- and after- post-processing output,
while the original FastSpeech 2 uses Mean Absolute Error
(MAE). We also replace the MSE loss for duration prediction
with MAE loss. These minor modifications are beneficial to
training efficiency and stability. The entire network is trained
in an end-to-end manner with the duration prediction loss and
the mel-spectrogram prediction losses, including before- and
after- post-processing parts.

3.2. Prosody extraction
The prosody-modeling components include the prosody ex-
tractors and the prosody predictors, as depicted in Fig. 2. At
training time, fine-grained prosody labels are extracted from
the ground-truth mel-spectrogram. Each prosody label con-
tains the prosody information of a short speech segment (i.e.,
a word or a phoneme, collectively referred to as token). The
prosody labels are scalars or low-dimensional vectors. They
are mapped to a prosody embedding whose dimension equal
to the dimension of the phoneme-level feature. The prosody
embedding sequence is then added to the phoneme-level fea-
ture sequence and fed into the second FFT stack for mel-
spectrogram prediction.

We use two different configurations for prosody extractor,
the rule-based one and the neural-based one, to extract the
fine-grained prosody information. We will go through their
model architecture in detail in the following paragraphs.

3.2.1. Rule-based prosody extractors

Following FastSpeech 2, we use F0 and energy as the rule-
based prosody labels. We use the DIO algorithm [19] for
F0 estimation and the L2-norm of each Short-Time Fourier
Transform (STFT) frame for energy estimation to extract

frame-level prosody labels. The F0 and energy values are
then averaged over the duration of each token to get token-
level prosody labels, as proposed in [7]. The averaged values
are then quantized into 256 bins, and transformed into a
prosody embedding sequence by an embedding lookup2.

3.2.2. Neural-based prosody extractors

Inspired by [9], we use a Vector-Quantized Variational Au-
toencoder (VQ-VAE) [20] as the reference encoder. The
reference encoder is jointly learned with the TTS model to
extract the prosody information from the ground-truth mel-
spectrogram. The reference encoder extracts a 3-dimensional
latent representation for each token from the ground-truth
mel-spectrogram. The quantization in VQ-VAE serves as an
information bottleneck, restricting the amount of information
flow from the ground-truth to the mel-spectrogram prediction
and thus encouraging the reference encoder to extract prosody
information, which is not contained in the text inputs.

The structure of the reference encoder can also be found
in Fig. 2. The reference encoder comprises a stack of two
2D convolution layers, each composed of 32 filters with 3 ×
3 kernel size and 1 × 1 stride. A flatten layer followed, and a
token-wise mean pooling is used to transform the frame-level
feature sequence into a token-level feature sequence. Then
the following two linear layers projected into a 3-dimensional
latent space. All the layers are followed by a dropout layer
with a 0.2 dropout rate.

2The only difference between the workflow here and FastSpeech 2 is
that we use token-level instead of frame-level prosody labels. However, in
FastSpeech 2, the prosody labels are actually predicted from an expanded
phoneme-level feature sequence, which only differs from the inputs of our
phoneme-level prosody prediction network by an expansion.



A VQ codebook, consists of 256 codewords, is used to
quantize the 3-dimensional latent vector to the nearest code-
word (measured with L2 distance). These prosody labels are
passed to a linear layer to get prosody embeddings, which are
then added to the phoneme feature sequence to predict mel-
spectrogram. A VQ loss is used to push the latent vectors and
the codewords towards each other.

The quantized vectors from the reference encoder are
treated as ground-truth prosody labels. The prosody pre-
dictor is then learned to predict the ground-truth prosody
labels from the phoneme-level or word-level features from
text input. The goal of reference encoder is to provide the
ground-truth prosody labels, so its parameters are fixed when
training the prosody predictor, and not used at inference time.

3.3. Prosody prediction
At inference time, since ground-truth prosody labels are not
available, we have to predict the prosody of an utterance from
the text input. As described in Section 2, both phoneme-
level features and word-level features can serve as inputs for
prosody prediction. For word-level features, there are a vari-
ety of pretrained language models [21, 22] that can be used
as a good word-embedding. For phoneme-level features, we
follow the configuration of FastSpeech 2, in which the output
of the first FFT stack is used to predict the prosody labels.

The model architectures of the prosody predictors are
shown in Fig. 2, whose network architectures are the same
as the duration model in FastSpeech 2. When the prosody
predictor takes word-level features as input, the predicted
word-level prosody embedding sequence is expanded in time
according to the word’s phoneme number. The prosody pre-
dictors are trained with MAE loss if rule-based prosody labels
are used, and MSE loss for neural-based prosody labels, re-
gardless of input features.

3.4. Hierarchical prosody modeling
Under our model architecture, it is possible to select dif-
ferent combinations of inputs (phoneme features or word
features) and targets (rule-based or neural-based prosody
labels) to train the prosody predictor. Our preliminary ex-
periments showed that word features provide more accurate
prosody prediction than phoneme features. However, the
low-resolution of word-level prosody embeddings hinders the
quality of synthesized audio samples, since the TTS model
tends to predict a blurred mel-spectrogram if there is not
enough information given. As a result, we design a hier-
archical prosody modeling architecture, which is composed
of a concatenation of a word-level prosody predictor and a
phoneme-level prosody predictor, as shown in Figure 3.

In the proposed architecture, word-level prosody is first
predicted by the word-level prosody predictor and expanded
to match the phoneme sequence length. The expanded em-
bedding sequence is then added to the phoneme feature se-
quence. By feeding the summed feature sequence into the
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Fig. 3: Proposed hierarchical prosody modeling architecture.

phoneme-level prosody predictor, the prediction of the fine-
grained phoneme-level prosody is thus conditioned on the re-
sult of the coarse-grained word-level prosody prediction.

The proposed hierarchical prosody modeling benefits
from high-resolution phoneme-level prosody labels and ac-
curate word-level prosody prediction simultaneously at infer-
ence time. In this framework, both rule-based and phoneme-
based prosody labels can be used to model phoneme-level or
word-level prosody. We will compare different hierarchical
paradigms with the non-hierarchical ones in Section 4.

4. EXPERIMENTS
4.1. Setup
All of our models are trained on the LJSpeech dataset [23],
which contains 13100 English utterances spoken by a female
speaker. We keep 892 sentences (with document title LJ001,
LJ002, and LJ003) for testing, and the remaining are used for
training. MFA is used to convert the transcripts into phoneme
sequences and discover the alignments between the phoneme
sequences and the utterances. The audio samples are con-
verted to 80-dimensional mel-spectrograms for training, and
predicted mel-spectrograms are converted to raw waveform
with pretrained MelGAN vocoder. Because the source code
of FastSpeech 2 has not been released up to the time the paper
was written, we used our implementation in the experiments
3.

At training time, the models are trained with Adam op-
timizer [24] (with β1 = 0.9, β2 = 0.98, and ε = 10−9) for
300k steps with batch size 16, and the learning rate scheduling
proposed in [16] is applied. The only exception is the word-
level prosody predictor. Since the loss and gradient flow of
the word-level prosody predictor are independent of all other

3FastSpeech 2: https://github.com/ming024/FastSpeech2

https://github.com/ming024/FastSpeech2
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modules, we train this module separately with Adam opti-
mizer (with learning rate 10−4, β1 = 0.9, β2 = 0.98, and
ε = 10−9) for 30k steps with batch size 16.

4.2. Predictability of prosody labels from different fea-
tures
This experiment is designed to compare the performance of
predicting prosody labels from phoneme-level features and
word-level features. We use FastText [21] and pretrained
BERT [22, 25] to generate word-level feature sequences,
which are used as the input of the word-level prosody predic-
tor. For a fair comparison, pretrained BERT is treated as a
static feature extractor without fine-tuning. To further study
the influence of context information in prosody prediction,
we also use BERT’s hidden features from different layers as
the input of the word-level prosody predictor.

We use the MAE loss of the rule-based prosody predic-
tors over the testing set for evaluation. The result is shown
in Figure 4. All word-level features outperform phoneme-
level features, verifying the hypothesis that word features can
model prosody variation better than phoneme features. For
different word embeddings, despite that BERT’s performance
is better than fastText, we cannot conclude that contextual-
ized information helps prosody prediction. Instead, we think
contextualized information does not make any noticeable dif-
ference since the hidden features from high layers do not beat
low-layer features4. We will use the 0-th layer BERT features
(i.e., the input word embedding of BERT) as the word-level
features in all following experiments. Similar results are also
observed in neural-based prosody label prediction, which is
not presented due to space limitation.

4.3. Objective evaluation
It is difficult to evaluate the quality and naturalness of synthe-
sized audio samples with objective metrics. However, there

4The higher layers of BERT are generally considered to be more contex-
tualized [26].

GPE VDE FFE F-MAE E-MAE

vanilla .4063 .2856 .4493 42.829 8.205

P+R .4084 .2836 .4660 41.806 7.363
P+N .4113 .2898 .4549 43.385 7.441

P+N, rand. .5278 .3436 .5278 57.119 9.290

W+R .3952 .2800 .4498 40.202 7.264
W+N .3977 .2972 .4494 42.096 8.050

W+N, rand. .4759 .2983 .4824 48.924 8.265

H(W+R, P+R) .3998 .2812 .4614 40.190 7.308
H(W+R, P+N) .3886 .2758 .4499 39.597 7.263
H(W+N, P+R) .3971 .2832 .4529 40.240 7.145
H(W+N, P+N) .3994 .2908 .4434 42.074 7.512

vanilla = no prosody modeling, P = Phoneme-level feature, W = Word-level feature,
R = Rule-based prosody labels (i.e. F0 and energy), N = Neural-based prosody label
(i.e. VQ-VAE codeword), H=Hierarchical model, rand. = prosody label randomly
sampled from the uniform prior of VQ-VAE.

Table 1: Objective prosody scores for TTS models with dif-
ferent prosody-modeling frameworks.

are several metrics used in early works to evaluate pairwise
prosody similarity [1, 27]:

• Gross Pitch Error (GPE): measuring the pitch similarity
between two utterances.

• Voice Decision Error (VDE): measuring the difference
of voiced/unvoiced decision between two utterances.

• F0 Frame Error (FFE): combination of GPE and VDE.

For the above metrics, We use the DIO algorithm for the esti-
mation of F0 and the frame-wise voiced/unvoiced decision of
both ground-truth and synthesized audio samples. To match
the length of two utterances, Dynamic Time Warping (DTW)
[28] is used to align the mel-spectrograms, and the resulted
alignment is applied to the F0 values and voiced/unvoiced de-
cisions of both utterances.

In addition to the metrics above, we also use the MAE of
F0 and energy, which is more compatible with our training
objective, to evaluate the synthesized utterances’ prosody. Let
ft, f ′t be the estimated F0, vt, v′t be the binary voiced/unvoiced
decision, et and e′t be the L2 norm of the t-th STFT frame
(after alignment) of the ground-truth and the synthesized au-
dio sample, and T be the number of frames after alignment.
We define two metrics F-MAE and E-MAE as below:

F-MAE =

∑T
t=1 |ft − f ′t |1[vt]1[v′t]∑T

t=1 1[vt]1[v
′
t]

,

E-MAE =

∑T
t=1 |et − e′t|

T

To reduce the differences caused by vocoding, we use the
utterances reconstructed by MelGAN from ground-truth mel-
spectrograms as the ground-truth for all the objective metrics.



The result is shown in Table 1. It can be seen that for
the non-hierarchical models, word-level features achieve bet-
ter performance than phoneme-level features (W+* v.s. P+*).
The models trained with rule-based prosody labels are slightly
better than those trained with neural-based features in most
cases (*+R v.s. *+N). We hypothesize it is because the neural-
based labels are too complicated to predict them accurately.
However, the scores of the utterances synthesized with pre-
dicted neural-based labels are still much better than randomly
sampled prosody labels (P+N, rand., W+N, rand.).

The scores of the four hierarchical models are generally
better than their non-hierarchical counterparts. However, it is
not clear which hierarchical model is the best, that is, which
type of prosody label is the most effective one at which level.
One should note that the metrics used in Table 1 only measure
the similarity of prosody to ground truth, not the quality of
audio. The issue will be addressed in the next subsection.

4.4. Subjective evaluation
We conducted three different subjective assessments, includ-
ing Mean Opinion Score (MOS), Comparison MOS (CMOS)
[29] and the AXY test [1], for audio quality and prosody nat-
uralness evaluation. 100 sentences randomly sampled from
the evaluation set are used for all the assessments. In each
assessment, every utterance (or utterance pair, for CMOS and
AXY) received five ratings from crowdsourced human raters.

4.4.1. MOS score

MOS score is used to evaluate the quality of audio sam-
ples synthesized by proposed hierarchical models and other
models. The results are listed in Table 5. All TTS models
with prosody modeling achieved better performance than the
vanilla baseline. Looking into the non-hierarchical models,
we find that despite accurate prosody prediction observed
in Table 1, word-level prosody modeling is still inferior to
phoneme-level prosody modeling in terms of MOS scores.
We carefully inspect the audio samples and find that there are
more artifacts and noises in audio samples synthesized with
word-level models. The information provided by the coarse-
grained prosody labels is not specific enough, hindering the
model from generating clear speech. It can also be seen that
the non-hierarchical models with rule-based prosody labels
are better than those with neural-based prosody labels.

The MOS scores of hierarchical models and phoneme-
level models are very close, which implies that the granularity
of prosody modeling is important for perceptual audio qual-
ity. The audio samples of the best hierarchical model H(W+R,
P+N) are even comparable to the samples reconstructed from
ground-truth mel-spectrograms, reflecting the effectiveness of
prosody modeling.

4.4.2. Pairwise subjective scores

We further conduct CMOS [29] and AXY test [1] to compare
hierarchical models and non-hierarchical models pairwisely.

vanilla P+R P+N W+R W+N

H(W+R, P+R)

H(W+R, P+N)

H(W+N, P+R)

H(W+N, P+N)
3.2

3.4

3.6

3.8

M
OS

Ground-Truth MOS: 4.318 ± 0.080

MelGAN reconstruction topline

Fig. 5: 5-point scale MOS naturalness evaluation of the TTS
models. The error bars indicate the 95 % confidence intervals.

Table 2: CMOS score and AXY reference similarity score
of the proposed hierarchical model (W+R, P+N) against non-
hierarchical models. Both scores are in a -3 ∼ 3 scale, with 0
begin neutral and the larger the better. The t-test p-values are
also reported.

In the CMOS test, the human raters are asked to select one
audio sample with better quality and naturalness out of two.
In the AXY test, the raters are presented two synthesized au-
dio samples and a ground-truth, and they are asked to select
one sample with prosody more similar to the ground-truth,
regardless of audio quality and any other factors. Before the
AXY test, four audio samples are used to instruct the raters to
ignore audio quality and focus on prosody. The hierarchical
model with word-level rule-based labels and phoneme-level
neural-based labels is used for all the pairwise comparison
tests since it outperformed any other hierarchical models in
terms of MOS score. The results are listed in Table 2.

The CMOS scores are consistent with the MOS scores,
which shows that the hierarchical models are slightly better
than the phoneme-level models in terms of naturalness, while
the difference is not significant. The AXY test reflects that the
prosody of audio samples synthesized with the proposed hier-
archical model is better than all the non-hierarchical models,
consistent with Table 1. We further find that the phoneme-
level models are better than the word-level models, which
contradicts the objective scores. We think that it is because
the raters are easily affected by the quality of speech samples,
thus unaware of subtle prosody variation.

5. CONCLUSION

The result shows that word-level prosody modeling achieves
more accurate prosody prediction than phoneme-level ones,
but subjective tests show that the perceptual quality degrades
due to coarse granularity. The proposed hierarchical prosody
modeling framework combines the advantages of both word-
and phoneme-level, thus capable of generating high-quality
audio samples with accurate prosody.
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